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The experimental logic of Moore and Mealy-type automata is investigated. 

1. INTRODUCTION 

1.1. Motivation 

Already in 1956, Moore (1956) presented an explicit example of a four- 
state automaton featuring an "automaton uncertainty principle" at a very 
elementary level. The formalism introduced by Moore has been extended by 
Conway ( 1971) and Chai tin (1965), amon g others. See H opcroft and U II man 
(1979) and Brauer (1984) for reviews on Moore and Mealy automata. 

In an article entitled Computational Complementarity, Finkelstein and 
Finkelstein (1983) were the first to study the experimental logic of very 
general automata; i.e., the ordered structure of propositions arising from 
experiments on automata, and the relationship to quantum physics. Based on 
this research, Grib and Zapatrin (1990, 1992) investigated an automaton 
type whose corresponding "macrostatements" (propositions about automaton 
ensembles) model arbitrary orthomodular lattices (Grub et al., 1995). In 
another interesting development, Crutchfield (1993) described the measure- 
ment process by introducing a hierarchy of automata. 

This article goes back to Moore's original approach and deals with an 
algebraic characterization of the experimental logic of Moore and Mealy- 
type automata. 
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1.2. Classical Logic Versus Quantum Logic Versus Automaton Logic 

In the following, we shall describe, in a somewhat simplified style, the 
construction of the logic calculus of classical physical systems, quantum 
systems, and automata. 

Let ~ be a classical system. We denote the set of all observables of the 
system by (Ai)i~/. It is characteristic for classical systems that all (Ai)i~/are 
simultaneously measurable. We denote the outcome of such a measurement 
by (xg)~t. The set of all possible outcomes forms the observation space O. 
The most general form of a prediction concerning ~ is that the point (xi)~t 
is determined by actually measuring (Ai);~1 will lie in a subset S of O. We 
may call the subsets of O the "experimental propositions" concerning ~ .  
These subsets form a Boolean algebra (which is equal to the power set of 
O). Associated with the system ~ is the phase space F. According to the 
concept of a phase space, the state of ~ is represented by a point p ~ F, 
which determines the outcome of the measurements (A ~)~ i in a deterministic 
way. We may assume a mapping f:  F --~ O which describes this correspon- 
dence. Each experimental proposition ,~ corresponds to a subset Fs of F by 
Fs = f -  I(S). These subsets Fs form the propositional calculus of the system 
~ ,  which is also a Boolean algebra [using f - I (S  t3 T) = f-I(S) t3 f-l(T), 
f - l (S  N T) = f-I(S) N f-l(T),  andf - ' (S ' )  = (f-l(S)) '].  

The situation in quantum mechanics is as follows. Let ~ be a quantum 
system and let (Bj)j~j be a set of compatible measurements. The experimental 
propositions concerning the measurement of (Bj)j~j are again subsets of the 
observation space Oj of all possible outcomes (xj)j~a [now Oj depends on 
the set (Bj)j~,]. According to the quantum mechanical formalism, the subsets 
Fs of the phase space F have to be replaced by closed subspaces of an 
appropriate Hilbert space H (or equivalently, by projection operators Ps of 
H). The set L(H) of all closed subspaces is called the propositional calculus 
(quantum logic) of the system ~ .  The set L(H) forms a complete atomistic 
orthomodular lattice (Kalmbach, 1983; Piziak, 1991; Ptfik and Pulmannovfi, 
1991). The story of quantum logic goes back to the seminal paper of Birkhoff 
and von Neumann (1936). The interest in quantum logic was revived through 
the investigations of Jauch (1968) and Piron (1976). The historical develop- 
ment and the different approaches to quantum logic can be found in Jam- 
mer (1974). 

At last we turn to automata logic. An automaton (Mealy or Moore 
automaton) is a finite deterministic system with input and output capabilities. 
At any time the automaton is in a state q of a finite set of states Q. The state 
determines the future input-output behavior of the automaton. If an input is 
applied, the automaton assumes a new state, depending both on the old state 
and on the input. An output is emitted which depends on the old state and 
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the input (Mealy automaton) or only on the new state (Moore automaton). 
Automaton experiments are conducted by applying an input sequence and 
observing the output sequence. The automaton is thereby treated as a black 
box with known description but unknown initial state. Let E be an automaton 
experiment and let OE be the observation space, i.e., OE is the set of all 
possible outcomes of E. Because of the deterministic nature of the automaton, 
for every experiment E there exists a mapping "rE: Q ~ OE determining the 
outcome of E and depending on the initial state of the automaton. As in 
the classical and quantum cases, experimental propositions concerning the 
experiment E are subsets SE of OE. For every experiment E, the inverse 
images of the sets SE under he form a Boolean algebra (more exactly, a field 
of sets). The elements of this Boolean algebra are subsets of the state set Q. 
We obtain a propositional calculus, termed the automaton logic, if we "paste" 
all Boolean algebras corresponding to all experiments together. This calculus 
forms a partition logic (Svozil, 1993; Schaller and Svozil, 1994). Intuitively, 
as has already been observed by Moore (1956), it may occur that the automaton 
undergoes an irreversible state change, i.e., information about the automaton's 
initial state is lost. A second, later experiment may therefore be affected by the 
first experiment, and vice versa. Hence, both experiments are incompatible. In 
this setup, the observer has a qualifying influence on the measurement result 
insofar as a particular observable has to be chosen among a class of noncom- 
easureable observables. But the observer has no quantifying influence on 
the measurement result insofar as the outcome of a particular measurement 
is concerned. 

2. O R T H O M O D U L A R  POSETS 

The appropriate algebraic structures to describe the logic of automata 
are found in the theory of orthomodular posets. Orthomodular structures 
arose from lattice theory (Birkhoff, 1948; Gr~tzer, 1971; Szfisz, 1963) and 
quantum logic (Birkhoff and von Neumann, 1936; Giuntini, 1991). The basic 
notion of orthomodular posets will be defined first. Then, a new type of 
logic, termed partition logic, will be introduced. We shall prove a representa- 
tion theorem, which identifies certain orthomodular posets with partition 
logics. Some examples of the new concepts will be given. More detailed 
introductions to the theory of orthomodular structures can be found in the 
book of Kalmbach (1983) and in the book of Ptfik and Pulmannovfi (1991). 
The books by Jauch (1968) and Piton (1976), among others, deal with physical 
applications, mainly in the context of quantum mechanics. 
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2.1. Basic  Def in i t ions  

Definition 2.1.1. An orthomodular poset (0MP)  is a set L endowed with 
a partial order -< and a unary operation ', called the orthocomplement,  such 
that the following conditions for all a, b • L are satisfied: 

(i) L possesses a least and a greatest element 0 and 1, and 0 :/: 1. 
(ii) a --< b implies b '  --- a ' .  
(iii) ( a ' ) '  = a. 
(iv) If  a < b ' ,  then the supremum a v b exists. 
(v) If  a < b, then b = a v (a '  A b) (orthomodular law). 

The symbols v, A denote the lattice-theoretic operations induced by --<. 
If  an OMP is an lattice, we call it an orthomodular lattice (OML). An OMP 
L does not have to be distributive or a lattice. On the other hand, De Morgan's  
law is valid in L: I f  a v b exists in L, then a '  A b '  exists also and a '  A b '  
= (a v b) '  [use condition (ii)]. In particular, 1' = 0 and 0 '  = 1. Moreover, 
condition (v) yields a v a '  = 1 for any a • L (and, dually, we also have 
a A a '  = 0 for any a • L). The orthogonality relation A_ for elements a, b 
of  an OMP L is defined by a ± b (a is orthogonal to b) if a -< b '  holds. A 
pair a, b • L is called compatible, denoted by a ~ b, if there exist three 
mutually orthogonal elements at,  bt, c such that a = a~ v c and b = bt v c. An 
element a e L is called an a t o m  in L i f a  4= 0 and if the inequality b -< a for b 
• L implies either b = 0 or b = a. 

We now exhibit some basic examples of  OMPs. Every Boolean algebra 
is an OMP. The lattice L(H) of all projection operators on a (real or complex) 
Hilbert space H (or, equivalently, the lattice of  all closed subspaces of  H) is 
an OMP, with the relation <-- given by the inclusion and with the operation 
' given by the formation of  the orthocomplement in H. 

Definition 2.1.2. A subset M of  L is called a sub-OMP of  L if the 
following conditions are satisfied: 

(i) 0 e M. 
(ii) If  a e M, then a '  e M. 
(iii) If  a, b e M and a I b, then a v b e M (the supremum is taken 

in L). 

The sub-OMP FA generated by an arbitrary subset A of  L is the smallest 
sub-OMP of  L containing A; it always exists. 

Definition 2.1.3. Let Lt, L2 be OMPs. A mapping f :  LI ---) Lz is called 
a morphism (of OMPs) if the following conditions are satisfied: 

(i) f (0 )  = 0. 
(ii) f (a ' )  = f (a) ' .  
(iii) If  a ± b, then f (a  v b) = f (a)  v f(b).  
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A m o r p h i s m f :  Ll --~ L:  is called an isomorphism (of  OMPs)  if f is injective, 
maps Ll onto/_.~, and the m a p p i n g f  -~ is also a morphism.  

Lemma 2.1.4. A bijective mapping f :  L~ ~ ~ is an isomorphism iff the 
fol lowing condit ions are satisfied: 

(i) f (a ' )  = f(a) ' .  
(ii) a <- b i f f f ( a )  --< f(b).  

Proof (i) I f f  is a morphism, f preserves the order. I f  a --< b for a, b E 
L~, then the or thomodular  law yields b = a ^ c for a c ~ L~ such that c ± 
a. Then, f (b)  = f(a)  ^ f(c),  and therefore f (a) <-- fib). For an isomorphism 
f, f and f - I  are morphisms,  hence we get condit ion (ii). 

(ii) The converse  direction is trivial. 

We shall prove three lemmas about the compatibi l i ty relation. The propo- 
sitions and their proofs  are taken from Pt~ik and Pulmannov~i (1991). 

Lemma 2.1.5. Let L be an O M P  and a, b E L: 
(i) I f  a 3- b, then a o b. 
(ii) I f  a -< b, then a "~, b. 
(iii) I f  a _L b, then b = (a v b) ^ a ' .  

Proof. (i) Since a 3- b, b _L 0, and 0 3_ a, we can write a = a v 0 and 
b = b v 0 .  

(ii) Accord ing  to the or thomodular  law, we can write b = a v c for c 
= b ^ a ' . T h e r e f o r e ,  c J_ a and we have a = a v 0 a n d b  = b v c .  

(iii) a _L b implies b '  = a v (a '  ^ b) according to the or thomodular  
law. Forming  the or thocomplement  and using DeMorgan ' s  law, we obtain 
b =  (a v b) ^ a'. 

Lemma 2.1.6. Suppose  that a o b. Then, every pair in the set {a, a ' ,  b, 
b '  } is compatible.  

Proof It suffices to prove that the assumption a ~ b implies a' ~ b. 
The other  assertions are not difficult to prove. Suppose  that a ~ b. Then, a 
= al v c and b = bl v c, where a~, bt, c are mutually orthogonal  in L. Since 
a 3_ bl, we have (a v bl) ^ b l '  = [Lemma 2.1.5(iii)]. Thus, a '  = (a v b 0 '  
v bt. We need to check that the elements c, b~, and (a v bl) '  are mutually 
orthogonal.  This is the case, since b~ --- a v b~ = ((a v b 0 ' ) '  and c -< a v 
bl = ((a v b 0 ' ) ' .  

Lemma 2.1.7. If  a, b ~ L and a ~ b, then a v b and a ^ b exist in L. 
Moreover,  if a = ar v c and b = b~ v c for mutual ly orthogonal elements 
aK, b~, c, then a v b = a~ v bt v c and a ^ b = c. Further, we have al = 
a ^ b ' ,  b~ = b ^ a ' .  Hence,  the elements a~, b~, c are uniquely determined 
by a and b. 



916 Schaller and Svozil 

Proof Since a~, b~, c are mutual ly orthogonal ,  we find that the supremum 
a~ v b~ v c exists in L. Furthermore,  a -< a~ v bl v c and b -< a~ v b~ v c. 
Let e be an element o f  L such that a --< e and b --< e. The inequalities a~ v 
c - < e a n d b l  v c < - - e i m p l y ( a l v c )  v ( b l  v c ) - - < e .  Hence,  a l v b t  v c i s  
the supremum o f  a, b. The existence o f  a A b fol lows f rom L e m m a  2.1.6 
and from the equality a A b = (a '  v b ' ) ' .  We now show that a ^ b = c. On 
the one hand, c -< a A b. On the other hand, a ^ b = (aj v c) ^ b --< (b '  v 
c) A b = c [Lemma 2.1.5(iii)]. Finally, we have al -< a and aL <- b ' .  Moreover ,  
by L e m m a  2.1.6, a A b '  exists in L. Thus,  at <- a A b ' .  Furthermore,  a ^ b '  
= (aj v c) ^ b '  -< (at v c) A C' = al.  The proof  of  the equali ty bl = b ^ 
a' is similar. 

2.2. Ideals  and States  

The definition o f  an ideal is similar to the definition o f  a lattice ideal. 
Addit ionally we require in condit ion (ii) that the elements a and b have to 
be orthogonal.  

Definition 2.2.1. Let L be an OMP. A nonvoid  subset I o f  L is called 
an ideal if it satisfies the fol lowing condit ions:  

(i) a e l , b < - a i m p l y b  E 1. 
(ii) a , b  • L a  2- b i m p l y a v b  • L 

Definition 2.2.2. An ideal P o f  L, P 4= L, is called prime i f a  _L b implies 
a • P o r b  • P. 

We denote by P(L) the set o f  all prime ideals o f  L. Let ~(P(L))  be the 
power  set o f  P(L). We define a mapping p: L ~ ~(P(L)) by p(a) = {P e 
P(L)Ia ~ P}. We call p the p-function. 

Lemma 2.2.3. Let P, P 4: L, be an ideal. The fol lowing condit ions 
are equivalent:  

(i) P is a prime ideal. 
(ii) a A b  • P a n d a ~ b i m p l y a  e P o r b  • P. 
(iii) a • P i f f a '  ~ P. 

Proof (i) implies (ii). Since a ~, b, there exist three mutually orthogonal  
elements a~, bl, c such that a = al v c and b = b~ v c. F rom L e m m a  2.1.7 
we know that c = a A b. Now, al 2. bl implies a l e  P or bl • P. Therefore,  
according to the definition o f  an ideal, a • P or b • P. 

(ii) implies (iii). We remark that 0 = a A a '  • P. We know from L e m m a  
2.1.6 that a ~ a ' .  Hence, a • P or  a '  • P. I f  both a and a '  are in P, then 
also 1 = a v a '  e P and P = L, which contradicts our  assumption P v~ L. 

(iii) implies (i). Let a, b • L and a _L b. We have to prove that a e P 
or b e P. If  a e P, the condit ion is satisfied. Let us assume a ~ P. It follows 
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that a '  ~ P. Since b -< a ' ,  we obtain b E P according to the definition of 
an ideal. 

Remark.  Compared to lattice prime ideals, the compatibility of  the ele- 
ments a and b is required additionally. 

L e m m a  2.2.4. The p-function possesses the following properties: 
(i) p(O) = Q. 
(ii) p(a ' )  = p(a) ' .  
(iii) If  a t b, then p(a v b) = p(a) U p(b).  
(iv) If  a -< b, then p(a) C p(b).  

Proof. ( i )p (0)  = {P ~ P(L)I0 ~ P} = Q.  
(ii) p(a ' )  = {P E P(L)Ia'  ~t P} 

= {P ~ P(L)Ia ~ P} (using Lemma 2.2.3) = P(L)\p(a).  
(iii) P e p(a  v b) c:~ a v b ft P c:~ a ft P or b ~ P 

¢m P E p(a) or P ~ p(b) ¢:~ P ~ p(a) U p(b).  
(iv) Let a --< b and P ~ p(a).  Then a ~ P, and this implies b ~ P 

according to the definition of an ideal. 

Defini t ion 2.2.5. A state (i.e., a two-valued state) on an OMP L is a 
mapping s: L ~ [0, 1] (i.e., a mapping s: L --9 {0,1 }) such that: 

(i) s(1) = 1. 
(ii) If  a 3_ b, then s(a v b) = s(a) + s(b). 

States are probability measures on an OMP. The definition is not exact 
when applied to infinite OMPs (Pt~ik and Pulmannovfi, 1991), but in this 
work we only deal with finite OMPs. Furthermore, in what follows we need 
only the concept of  two-valued states, which is strongly connected to the 
definition of a prime ideal. We denote by S(L) the set of  all two-valued states 
on L. 

Lemma 2.2.6. Suppose that a, b ~ L and a -< b. Then, s(a) <- s(b) for 
any s E S(L). 

Proof. Using the orthomodular law, we can write b = a v (b ^ a ' ) ,  and 
therefore s(b) = s(a) + s(b ^ a ')  >- s(a). 

Lemma  2.2.7. (i) Let P be a prime ideal. Define a mapping s: L 
{0, 1} by 

s ( x )  = 

Then, s is a two-valued state. 

0 if x ~ P  

1 i f  xq~P 

(ii) Let s be a two-valued state. Set P = {x E LIs(x) = 0}. Then, P is 
a prime ideal. 
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Proof (i) Since 1 ~ P, the condit ion s( l )  = 1 is satisfied. Suppose  that 
a ± b. We have to show that s(a v b) = s(a) + s(b). We first assume that 
a v b E P. Then also a, b ~ P, and we obtain 0 = s(a v b) = s(a) + s(b) 
= 0 + 0 = 0. Let us now assume that a v b ~ P. Accord ing  to the definition 
o f  a prime ideal, one o f  both elements a, b has to be in P. I f  both a and b 
are in P, then also a v b ~ P, which contradicts our  assumption. Thus,  we 
obtain 1 = s(a v b) = s(a) + s(b) = 1 + O. 

(ii) First we prove that P is an ideal. Let a ~ P and b -< a. Since b -< 
a, we know by L e m m a  2.2.6 that s(b) <-- s(a). Together, we obtain s(b) = 
0; hence b ~ P. Let us now assume that a, b E P and a 3_ b. We have s(a 
v b) = s(a) + s(b) = 0 + 0 = 0. Therefore,  we obtain a v b ~ P. Finally 
we have to show that P is prime. Let a, b be two elements o f  L such that 
the relation a _L b holds. We have s(a v b) = s(a) + s(b) -< 1. Hence,  s(a) 
= 0 or  s(b) = 0 and therefore a ~ P or  b ~ P. 

As we shall see later, the set o f  all pr ime ideals P(L) [i.e., the state 
space S(L)] can be very poor  (in the extreme case it can be empty).  It seems 
therefore useful to distinguish the cases when P(L) is relatively big. 

Definition 2.2.8. (i) An O M P  L is called rich if the fol lowing implica- 
tion holds: 

{P ~ P(L)Ia f~ P} C {P ~ P(L)Ib ~ P} implies a < - b  

(ii) An O M P  L is called prime if for all a, b ~ L, a ~ b there exist a 
prime ideal P E P(L) containing exactly one o f  both a and b. 

Using the p-function,  we can write: (i) L is rich if p(a)  C p(b) implies 
a -< b; and (ii) L is prime if a ~ b implies p(a) 4: p(b). 

Lemma 2.2.9. Every rich O M P  is prime. 

Proof Let L be a rich O M R  For all x ~ L we set p(x) = {P ~ P(L)Ix 
P}. Let a, b be two arbitrary elements o f  L. I f  p(a) = p(b), then a = b 

by the richness o f  L. Therefore,  for a 4: b also p(a) ~ p(b), and a prime 
ideal containing exactly one o f  both a and b exists. 

2.3. Concrete Logics and Partition Logics 

Definition 2.3.1. A concrete logic is a pair (1), A), where ~ stands for 
a set and A stands for a collection o f  subsets o f  UZ satisfying: 

(i) O E A. 
(ii) I f A  ~ A, then ~ k 4  E A. 
(iii) I f A ,  B E A a n d A  fq B = O ,  t h e n A  U B  e A. 
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A routine check of the axioms (i)-(v) in Definition 2.3.1 shows that a 
concrete logic becomes an OMP if we take the set inclusion for the relation 
- and the set complement  for the orthocomplement ' 

A simple example of  a concrete logic is a pair ( ~ ,  A), where ~ is a 
finite set o f  even cardinality and A is the collection of  all subsets of  l~ with 
an even number of  elements. 

Theorem 2.3.2 (Gudder). An OMP L is isomorphic to a concrete logic 
iff L is rich. 

Proof (i) Suppose first that L is isomorphic to a concrete logic 
( ~ ,  A). We may assume that L = A. Take A, B E A such that A ~ B. We 
have to prove that p(A) ~ p(B). Now, A :~ B implies AkB q: O and therefore 
we can choose a point q e AkB. Put P = {C E AIq ~ C}. A routine check 
verifies that P is a prime ideal. From the definition of  P it follows that P 
p(A), but P ~t p(B). 

(ii) Conversely, suppose that L is rich. Put l'~ = P(L) and put A = 
{p(a)la ~ L}, where p denotes the p-function. Let us show that (11, A) is a 
concrete logic. From Lemma  2.2.4(i,ii) we know that p(0) = G E A and 
that p(a)' = P(L)~p(a) E A for any p(a) ~ A. Now, let p(a) and p(b) be 
orthogonal elements of  A. Since p(a) N p(b) = 0, we obtain p(a) C P(L)\p(b) 
= p(b'). By the richness of  L we conclude that 
a _L b. Hence, a v b exists and p(a) U p(b) = p(a v b) E A [using 2.2.4(iii)], 
proving that (12, A) is indeed a concrete logic. From Lemma 2.2.4(iv) we 
know that a --< b implies p(a) C_ p(b). Conversely, from the richness of L 
we know that p(a) C p(b) implies a --- b. Hence, by Lemma 2.1.4, the 
mapping p: L ~ A is an isomorphism. 

Remark. Theorems 2.3.2 and 2.3.9 are related to the Birkhoff-Stone 
representation theorem for distributive lattices and Boolean algebras, 
respectively. 

Definition 2.3.3. A relation ~- on a set M is called an equivalence relation 
if it satisfies the following conditions for all a, b, c ~ M: 

(i) a ~- a (reflexivity). 
(ii) a ~ b implies b ~ a (symmetry).  
(iii) a ~- b and b ~ c implies a ~- c (transitivity). 

Definition 2.3.4. Let M be a set. A collection ,~ of  subsets of  M is called 
a partition of M if it has the following properties: 

(i) A n B = Q o r A  = B for alIA,  B c 9[. 
(ii) U,~[ = U A ~ l  A = M. 

Let ~- be an equivalence relation on M and let a ~ M. The equivalence 
class of a modulo ~ is the set [a] = {b ~ Mla ~ b}. The set of all 
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equivalence classes modulo ~-, written M~ ~-, is called the quotient set of  M 
by ~ .  It is easy to check that M~ ~- forms a partition of  M, called the partition 
induced by ~-, or the partition corresponding to ~-. Let 21[ and ~ be partitions 
of  a set M. We call 91[ finer than ~ or say that 2[ is a refinement of  ~ if for 
every A ~ 21[ there exists a B E ~ such that A C B. 

The following definition of  the pasting technique is due to Navara and 
Rogalewicz ( 1 99 1). 

Definition 2.3.5. Let 52 be a family of OMPs satisfying the following 
condition: 

For all P, Q E 52, P n Q is a sub-OMP of both P and Q, and the partial 
orderings and the orthocomplementations coincide on P n Q. 

Define on the set L = US  = OpE~ P a relation -< and a unary operation 
' as follows: 

(i) a -< b iff there exists a P E 52 such that a, b ~ P and a -<p b. 
(ii) a '  = b iff there exists a P E 52 such that a, b E P and a 'p = b. 

(The indices indicate that the operations belong to the respective OMP.) The 
set L together with --- and ' is called the pasting of  the family 52. 

Let P be a partition of  a set M. The Boolean algebra generated by P 
is the set Be = {US = UaEs AIS C P}, together with the inclusion and 
the complement. 

Definition 2.3.6 (Partition logic). Let ~ be a family of  partitions of a 
set M. The pasting of the Boolean algebras BR, R ~ ~ ,  is called a partition 
logic, denoted by (M, ,9l). 

It follows from the definition that the orthocomplement A' of  a partition 
logic (M, ~ )  is identical with the set complement M\A. Further, A --< B 
implies A C B. The converse is in general not true. 

Lemma 2.3. 7. A partition logic P = (M, ~ )  is an OMP iff the following 
conditions are satisfied: 

(i) The relation -< is transitive. 
(ii) If A _1_ B (A <-- B'), then the supremum A v B exists. 

Proof (i) If P is an OMP, the two conditions are satisfied. 
(ii) Let P = (M, ~R) be a partition logic satisfying the two conditions. 

Let A ~ P. Then there exists an R ~ ~ such that A ~ BR. In BR we have 
A <--BR A and therefore also A <- A, hence, the relation <-- is reflexive. Let 
A, B e P and assume A <- B, B <-- A. We obtain A C B and B C A, obtaining 
A = B. Hence, - is also symmetric. Taking also condition (i) into account, 
we showed that -< is an order relation. The axioms (i)-(iii) of  Definition 
2.1.1 follow trivially. Axiom (iv) is identical with condition (ii). Let A, B 
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P and A -< B'. Then, there exists an R e ~ such that A, B • Bn, and therefore 
also A U B • BR and A, B --< A U B. By condition (ii) the supremum A v 
B exists. We obtain A, B C_ A v B C A U B, which implies A v B = A U 
B. In the same way, if A' -< B holds, we obtain A ^ B = A n B. Let A --< 
B. Then, A v (A' ^ B) = A U (A' n B) = B, satisfying the orthomodular law. 

A block of an OMP L is a maximal Boolean subalgebra of L. Every 
element x of  L is contained in at least one block, since the Boolean subalgebra 
generated by x (and consisting of x, x',  0, 1) can be embedded into a maximal 
one. We denote the set of all blocks of an OMP L by ~(L).  

Theorem 2.3.8. Let L be an OMP. Then, L is the pasting of its blocks ~(L).  

For a proof see Navara and Rogalewicz (1991). 

Let L be an OMP and let x, y • L with x --< y. The sub-OMP F{x, y} 
generated by the set {x, y} is equivalent to the set {0, 1, x, x', y, y' ,  x' ^ y, 
x v y'} (some of the elements may coincide, for instance, if x = 0 or x = 
y). Moreover, F{x, y} is a Boolean algebra. We put (S(L) = {F{x, y} Ix, y 
• L and x -< y}. L is the pasting of the family iS(L). 

Theorem 2.3.9. An OMP L is isomorphic to a partition logic i ffL is prime. 

Proof (i) The proof is analogous to the proof of Theorem 2.3.2(i). First, 
suppose that L is isomorphic to a partition logic R = (M, ~) .  We may assume 
that L = R. Take A, B • R such that A 4: B. Now, A 4: B implies (A\B) O 
(B\A) 4 : 0  and therefore we can choose a point q • (A\B) O (B\A). Put 
P = {C • Rlq ~ C}. A routine check verifies that P is a prime ideal. From 
the definition of  P it follows that exactly one of both A, B is an element of 
P. Therefore L is prime. 

(ii) Conversely, suppose that L is prime. Put M = P(L). Let F • (S(L). 
Define a partition Rr of P(L) by Rr = {p(a)la is atom of F} (p is the p- 
function). It follows from Lemma 2.2.4 that Rr is indeed a partition of M = 
P(L). Put 9] = {Rrl F • ~(L) } and let R be the partition logic (M, ~) .  We 
propose that p: L ~ R is an isomorphism, p is injective by the primeness of 
L, p is surjective by the construction of R. For every F • ~(L), the restriction 
of p to F, p I F: F ~ Rr, is an isomorphism. Since by Lemma 2.1.4, L is the 
pasting of fS(L) and R is the pasting of ~R, L and R are also isomorphic. 

Remark. If every element of L can be written as a supremum of a finite 
set of atoms, we may also use the family ~(L)  instead of the family fS(L). 

Corollary 2.3.10. Every concrete logic is a partition logic. 

Proof The proposition follows from Lemma 2.2.9, Theorem 2.3.2, and 
Theorem 2.3.9. 
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We shall see later that there exist OMPs which are prime but not rich. 
The class of concrete logics is therefore a proper subclass of the class of 
partition logics. 

2.4. Greech ie  Log ics  

In this part we introduce a technique to design OMPs with special 
properties. 

Definition 2.4.1. Let ~ be a system of Boolean algebras. We say that 
~ is almost disjoint if for any pair A, B E ~ at least one of the following 
conditions is satisfied: 

(i) A = B. 
(ii) a n B = {0, 1}. 
(iii) A N B = {0, 1, x, x' }, where x is an atom in both A and B. Moreover, 

x' 

Definition 2.4.2. Let ~ be an almost disjoint system of Boolean algebras. 
A finite sequence (B0, Bt . . . . .  B,_I) of elements of ~ is called a loop of 
order n if the following conditions are satisfied (the computation of the i, j ,  
k is modulo n): 

(i) B i n  Bi+l = {0, l, xi, x'} for 0 <-- i --< n -  1. 
(ii) B i n  Bj = {0, l} fo r j  4: i -  l , i , i  + I. 
(iii) B i n  Bj N Bk = {0, I } for distinct indices i, j, k. 

Observe that ever), loop (Bo, BI . . . . .  B,,_~) uniquely determines a 
sequence of atoms (e0 . . . . .  e,,-0 such that e~ is the common atom of B,- 
and B i +  I . 

Lemma 2.4.3. Let ~ be an almost disjoint system of Boolean algebras 
and let L be the pasting of ~ .  Then, --< is a partial order and the operation 
' is an orthocomplementation. 

For a proof see Kalmbach (1983) and Ptfik and Pulmannovfi (1991). 

Theorem 2.4.4 (Greechie). Let ~3 be an almost disjoint system of Boolean 
algebras and let L be the pasting of ~ .  Then: 

(i) L is an OMP iff ~ does not contain a loop of order 3. 
(ii) L is an OML iff ~ does not contain a loop of order 3 or 4. 

For a proof see Kalmbach (1983) and Ptfik and Pulmannov~i (1991). 

Definition 2.4.5. An OMP is called a Greechie logic if the following 
conditions are satisfied: 

(i) Every element of L can be written as supremum of at most countably 
many mutually orthogonal atoms in L. 
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a b c 

Fig. 1. 

(ii) The collection of  all blocks in L forms an almost disjoint system. 

A useful way of  exhibiting the Greechie logics is the drawing of Greechie 
diagrams. Let L be a logic and ~ be a system of blocks of  it. Then, L = 
U ~ .  The Greechie diagram associated with L consists of  a set of points and 
a set of  lines. The points are in one-to-one correspondence with the atoms 
of L; the lines are in one-to-one correspondence with the blocks of  L. 

For instance, the drawing in Fig. 1 represents the Boolean algebra 2 3 

with the atoms a, b, and c. If L is not a Boolean algebra, then it contains 
several blocks which may or may not have atoms in common. If two distinct 
blocks drawn in Fig. 2 of  L have exactly one atom c in common, then the 
corresponding edges have a comer  at c. For instance, the Greechie diagram 
drawn in Fig. 3 corresponds to the Hasse diagram drawn in Fig. 4. 

a b c c d e 

Fig. 2. 

a e 

C 
Fig. 3. 

1 

IP e I 

e 

0 
Fig. 4. 
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a )  . . . b )  

Fig. 5. 

Schal ler  and Svozi l  

Note that the Greechie diagrams allow us to detect the presence of the 
loops of order 3 or 4 and therefore indicate whether the structure in question 
is or is not an OMP (OML). A loop of order 3 shows up as a "triangle" and 
a loop of order 4 as a "square." For instance, the Greechie diagram drawn 
in Fig. 5(a) does not define an OMP, the Greechie diagram drawn in Fig. 
5(b) defines an OMP, which is not a lattice. 

Definition 2.4.6. Let L be a Greechie logic. Let X be the set of all atoms 
of L and let ~ be the system of all blocks of L. A subset W C X is called 
a weight (on the Greechie diagram) if I W n B I = 1 for any block B E 
(IA I denotes the cardinal number of the set A). 

W(X) will denote the set of  all weights on L. 

Lemma 2.4.7. Let L be a Greechie logic and let X be the set of its atoms. 
Let q0: P(L) --~ W(X) be the mapping defined by the formula qffP) = {x 
Xlx  ~ P}. Then, ~p is an isomorphism of  sets. 

Proof qffP) is a weight on X for any P ~ P(L). The mapping q0: P(L) 
---) W(X) is injective, To show that ~p is also surjective, take a weight W E 
W(X). Put P = {a ~ L I there exists an x E W such that a -< x' }. A routine check 
yields that P is a prime ideal of L. Since qffP) = W, the proof is completed. 

We may use the one-to-one correspondence between prime ideals and 
weights to construct OMPs with special properties. 

Consider the Greechie diagram of Fig. 6. According to Theorem 2.4.4, 
the associated Greechie logic is an OMP, termed W3,4 by Greechie. We 

al  a2 

a5 

Wa9 
a6 

al0 a l l  

Fig. 6, W3.4. 

a3 a4 

a7 a8 
i 

a12 
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propose that it possesses no prime ideals. Consider Fig. 7. In these figures 
the bold lines indicate a disjoint covering of W3,4 by its blocks. In Fig. 7(a), 
the covering consists of three blocks B t, B 2, and B 3. Therefore, 

IWt = I w n  XI = I w n  (BI U B2 U B3) I 

= I W N  B~I + I W N  B21 + I W N  B31 = 3 

for any W e W(X). In Fig. 7(b) there is a disjoint covering consisting of  
four blocks Ba, Bh, B,., and Be, and therefore I WI = 4 for any W • W(X). 
This is a contradiction. Hence, there is no weight and no prime ideal on Ws.4. 

The latter fact is also seen by the following simple reasoning. Assume 
that the OMP W3.4 is isomorphic to a partition logic (M, ,91). Let x • M. 
Now, x has to be an element in one of  the atoms of  B,,. Without loss of  
generality we may assume that x E ai- Now, x has to be element in one of 
the atoms of  Bh. Since x • ab x • a2 is not possible, because al, a~. are 
atoms of  the same block BI. Without loss of  generality we may assume that 
x • a6. Now, x has to be element in one of the atoms of Be. The only choice 
left is x • atj. Now, x has to be element in one of the atoms of Be. But 
every choice x • a4, x • as, or x e al2 is in contradiction to x e a~, x • 
a6, and x e a11, respectively. Therefore, the OMP W3,4 is not isomorphic to 
a partition logic. Furthermore, there exist OMLs such that P(L) = Q. An 
example is the "spider" lattice of Fig. 8 (Pt~ik and Pulmannov~i, 1991, p. 37). 

If a Greechie logic is prime (rich), we may also use the one-to-one 
correspondence between prime ideals and weights to construct the isomorphic 
partition logic (the isomorphic concrete logic). We give two examples. Con- 
sider the Greechie diagram of  the OMP L drawn in Fig. 9. Let X be the set 
of its atoms {al . . . . .  a9} .  L possesses six weights, W(X) = {W1 . . . . .  W6}; 
see Fig. 10. According to Lemma 2.4.7, instead of  the mapping p: L 
~P(L)) the mapping q: X --~ ~(W(X)) is used. q is defined by q(a) = {W 
E W(X)Ia • W} for all a • X. For instance, q(aO = {WI, W2}. We obtain 
the partition logic of Fig. 11. (The numbers denote the corresponding weights.) 
A check of  the axioms in Definition 2.3.1 shows that L is a concrete logic. 

Ba Bb Bc Bd 
Bi 

B2 

B3 

a) b) 
Fig. 7. Two disjoint coverings of W3.4. 
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A 

w v w 

Fig. 8. The spider. 

The second example describes a partition logic which is not a concrete 
logic. The example is taken from Pt~ik and Pulmannov~i (1991, p. 39). Consider 
the Greechie diagram of the OMP L drawn in Fig. 12. Let X be the set of  
its atoms {al . . . . .  al3}. L possesses 14 weights, W(X) = {WI . . . . .  Wj4}, 
drawn in Fig. 13 (the numbers denote the atoms in a weight). We obtain the 
partition logic of Fig. 14 (the numbers denote the corresponding weights). 
We propose that L is not a concrete logic. The disjoint sets { I, 2, 3} and {7, 
10, 13} are both in L, but not their union {1, 2, 3, 7, 10, 13} (we identify 
L with its isomorphic partition logic). Therefore, condition (iii) of Definition 
2.3.1 is not satisfied, and L is not a concrete logic (Ptfik and Pulmannov~i, 
1991, p. 39). 

al  a2 a3 

a4 a5 

a7 a8 

Fig. 9. Example 1. 

a6 

a9 
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WI = {al,  as, a9} 

W4= {a3, as, a7} 

14/2 = {ab a6, as} 

w5 : {,,3, a , ,"8}  
Fig. 10. The weights of example 1. 

{1,2} {3,4} {5,6} 

927 

W3 = {a2, a,, ag} 

w6 = {a2, a6, aT} 

.6 \ 

{3,6} {1,5} {2,4} 

{4,5} {2,6} {1,3} 
Fig. 11. The isomorphic partition logic to example I. 

4 

w 

10 
Fig. 12. Example 2. 
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w, = {1,5,9, 13} 

( 5  
w 

W2 = {1,4, 6 ,9}  w~ = {1,5,8, 1o} 

W4 = {2, 5, 9, 12, 13} W5 = {2, 5, 8, 11, 13} 

A 

W6 = {2 ,4 ,6 ,9 ,  12} 

A 

W7={2,4,7,11} W8={2,4,6,8,11} W9 = {2, 5, 8, 10, 12} 

v 

W~o = { 3 , 7 , 1 1 , 1 3 }  

v 

Wj~ = { 3 , 6 , 8 , 1 1 , 1 3 }  

v 

Wi2 = { 3 , 6 , 9 , 1 2 , 1 3 }  

W~3 = {3, 7, 10, 12} 

v 

Wl4 = {3, 6, 8, 10, 12} 
Fig. 13. The weights of example 2. 
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{10,11,12,13,14} 

{ 4 , 5 , 6 , 7 , 8 , 9 } /  

{1,2,3} % 

{4,6,9,12,13,14} 

w 

(5,7,8,10,11} 

{2,6,7..,8} {1,3,4,5,9} 

~ , 6 . 8 , 1 1 , 1 2 , 1 4 }  

{ 1 , 4 , 5 , 1 0 , 1 1 , 1 2 } V  {7,10,13} 

{3,5,8,9,11,14} 

{3,9,1"~,14} { 1,2,4,'6,12} 
Fig. 14. The isomorphic partition logic to example 2. 

3. AUTOMATA THEORY 

More detailed introductions to automata theory can be found in Booth 
(1967), Brauer (1984), Conway (1971), and Hopcroft and Ullman (1979). 

3.1. Basic  Def ini t ions  

An alphabet is a finite nonvoid set. The elements of an alphabet are 
called symbols. A word (or string) is a finite (possibly empty) sequence of 
symbols. The length of a word w, denoted by I w I, is the number of symbols 
composing the string. The empty word is denoted by e. E* denotes the set 
of all words over an alphabet E. The concatenation of two words is the word 
formed by writing the first, followed by the second, with no intervening 
space. Let E be an alphabet. E* with the concatenation as operation forms 
a monoid, where the empty word e is the identity. A (formal) language over 
an alphabet ~ is a subset of E*. 

Definition 3.1.1. A Moore automaton M is a five-tuple M = (Q, E, A, 
8, h), where: 

(i) Q is a finite set, called the set of states. 
(ii) E is an alphabet, called the input alphabet. 
(iii) A is an alphabet, called the output alphabet. 
(iv) ~ is a mapping Q x E to Q, called the transition function. 
(v) h is a mapping Q to A, called the output function. 

Let us sketch the appropriate picture informally. At any time, the automa- 
ton is in a state q E Q, emitting the output k(q) ~ A. If an input a E ~ is 
applied to the automaton, in the next discrete time step the automaton instantly 
assumes the state p = ~(q, a) and emits the output k(p). 

Definition 3.1.2. A Mealy automaton is a five-tuple M = (Q, ~, A, 8, 
h) where Q, E, A, ~ are as in the Moore automaton and h is a mapping from 
Q X ~ t o A ,  
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A Mealy automaton emits the output at the instant of  the transition from 
one state to another. The output depends both on the previous state and on 
the input. 

We use directed graphs, called transition diagrams, to describe Moore 
and Mealy automata. The vertices of  the graph correspond to the states of  
the automaton. For a Moore automaton, every vertex is labeled by a pair 
(q/x), q ~ Q, x E A, where q is the corresponding state of  the automaton 
and x = h(q) is the associated output with this state. If  there is a transition 
from state q to state p on input a, then there is an arc labeled a from state 
q to state p in the transition diagram. For Mealy automata, the vertices are 
labeled with the corresponding state. If  there is a transition from state q to 
state p on input a, then there is an arc from state q to state p labeled (a, k(p,  
a)). For example,  in Section 3.2 Fig. 15 represents a Moore automaton and 
Fig. 17 represents a Mealy automaton. 

To formally describe the behavior of  an automaton, it is desirable to 
extend the transition function 8 to apply to a state and an input f iord, rather 
than to a state and to a sing!e symbol.  We define a mapping 8 from Q x 
2~* to Q. We shall denote by 8(q, w) the state in which the automaton is after 
reading w, starting from state q. Formally, we define (i) 8(q, e) = q, and (ii) 
8(q, wa) = 8(8(q, w), a) for w ~ Z* and a ~ Z. 

We also extend the output function k to a mapping ~.: Q x Z* --) A*. 
Let a l, . . . ,  an E Z. We define 

~.(q, al " ' "  a,,) = h(q)h(8(q, a0)X(8(q, ala2)) "'" k(8(q, al " ' "  a,,)) 

for Moore automata and 

~(q, al " '"  a,,) = k(q, a0h(8(q ,  a0 ,  a2) " '"  h(8(q, al " ' "  a , - 0 ,  a , )  

for Mealy automata. ~(q, w) is the output sequence obtained by applying an 
input sequence al " ' "  a, .  Since 8(q, a) = 8(q, a) and k(q, a) = k(q, a) for 
any input symbol a (i.e., ~.(q) = k(q)), we may again use 8 (i.e., k) in place 
of  8 (i.e., ~). Note that for a word w with t w l = n, the length of  the output 
sequence is n + 1 for a Moore automaton and n for a Mealy automaton. 

Let p, q be any two states belonging to the state set Q. Then, p is 
equivalent to (indistinguishable f rom)q ,  written as p = q iff k(p,  w) = h(q, w) 
for all possible words w ~ Z*. Otherwise the states are said to be distinguish- 
able. We call an automaton minimal if any two states of  the automaton are 
distinguishable. We say that a word w ~ Z* distinguishes the two states p 
and q if h(q, w) :/: k(p,  w). A somewhat  weaker equivalence property is that 
of  k-equivalence. For each positive integer k we say that p is k-equivalent 

k 
to state q, written as p -= q, iff k(p, w) = ~.(q, w) for all input sequences w 
E Z* of length k. Both equivalence = and k-equivalence --= are equivalence 
relations that obey the reflexive, symmetric,  and transitive laws. We denote 
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the k partiti°n kc°rresp°nding to = by Q~ - and the partition corresponding 

to - by Q~ - .  

Theorem 3.1.3. (i) (Moore) Let M = (Q, A, Z, 3, h) be a Moore automaton 
with n states and m outputs. Further, let h be onto. Then, two distinguishable 
states can be distinguished by some word of  length at most n - m. 

(ii) (Huffman/Mealy) Two distinguishable states of  a Mealy automaton 
with n states can be distinguished by some word of length at most n - 1. 

k 

Proof (i) We denote by f(k) the number of  equivalence classes of  - 
and by f(cz) the number of  equivalence classes of  - .  Then, plainly, 

m = f (0 )  <--f(1) < f ( 2 )  ~ . . .  --<f(w) <-- n 

and so we can define N as the least k wi thf (k)  = f(k + 1). We proposef (N)  
N + I  . . N 

=f(N  + 1) =f (N  + 2) . . . . .  f ( ~ ) .  Now, p -= q implies ~(p, a) = ~(q, 
N + I  . ..1._ a) for all a ~ E and therefore also 5(p, a) - 8(q~ a) [usmg f (N)  = f (N 

1)]. Together, with X(p) = ik(q), we obtain p --  q, proving the equality 
chain above. Now, 

m = f ( 0 )  < f ( 1 )  < - ' -  < f ( N )  = f ( ~ ) - < n  

implies m + N --< n and any two distinguishable states are distinguishable 
by a word of  length at most N --< n - m. 

(ii) The proof  is analogous to (i). 

Let Ml = (Qt, E, A, ~l, hi), M2 = (Qz, ~,, A, ~2, hz) be two automata 
of the same type (both are either Moore or Mealy automata). A state q~ E 
QI is said to be equivalent to a state q2 E Q2 iff h~(q~, w) = hz(q2, w) for 
all w E E*. The two automata MI and Mz are said to be equivalent if for 
each state q~ E Qt there exists an equivalent state q2 E Q2, and, conversely, 
for each state qz E Qz there exists an equivalent state q~ ~ Q~. 

Theorem 3.1.4. Let M = (Q, ~ ,  A, ~i, X) be a Moore or a Mealy automaton. 
Then there exists a minimal automaton equivalent to M. 

Proof Put M "  = (Q/=,  E, A, 8% kin). Define ~m([q], a) = [~(q, a)] 
for all [q] E Q / -  and all a E E. I f  M is a Moore automaton, define hm([q]) 
= X(q). If  M is a Mealy automaton, define hm([q], a) = h(q, a). According 
to the construction, Mr" is minimal. Every state q E Q is equivalent to the 
state [q] ~ Q~ =. Therefore, also M and M m are equivalent. 

Now, let M~ be a Moore automaton and M2 be a Mealy automaton. 
There can never be equivalence in the above sense between these automata 
because the output of a Moore automaton to the input w e 1~* contains one 
more symbol than the output of  the Mealy automaton. However,  we may 
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neglect the first output symbol of a Moore automaton M = (Q, E, A, 8, k) 
by using a reduced output function h':  Q x E* -4 A* defined by 

X'(q, al "'" an) = k(8(q, al)) "'" k(8(q, al "'" a,,)) 

Note that h(q, w) = h(q)h'(q,  w). We can prove the following equivalence 
theorems, equating the Mealy and Moore models. 

Theorem 3.1.5. If Mj = (Q, ~, A, 8, hi) is a Moore automaton, then 
there exists a Mealy automaton M2 equivalent to M~. 

Proof. Put M2 = (Q, Y~, A, 8, hE), where h2(q, a) = h(8(q, a)) for any 
q E Q and any a ~ E.  The two automata are equivalent. 

Theorem 3.1.6. Let M I = (Q, E, A, 81, ht) be a Mealy automaton. Then, 
there exists a Moore automaton M2 equivalent to M~. 

Proof Put M 2 = (Q × A, ~, A, 82, h2). Define 82((q, x), a) = (Sl(q, 
a), h(q, a)) and h2((q, x)) = x for any (q, x) ~ Q × A and a ~ ~. Then, 
the states q ~ Q of Mt and (q, x) E Q x A, x arbitrary, of Me are equivalent. 
Therefore, also M1 and M2 are equivalent. 

3.2. Automata Experiments 

In what follows we assume that we are dealing with a Moore or a Mealy 
automaton, which is contained in a black box with input-output interface. 
Thus, we are only allowed to observe the input and output sequences associ- 
ated with the box. To conduct an experiment, the experimenter applies an 
input sequence and notes the resulting output sequence. Using this output 
sequence, the experimenter tries to interpret the information contained in the 
sequence to determine the values of the unknown parameters. If there is 
enough information in the output sequence, the experimenter will state conclu- 
sions about the unknown parameters. If, however, the results are inconclusive, 
the experimenter can decide to extend the experiment by applying another 
input sequence to obtain more information. Alternatively the experimenter 
may terminate the experiment with the conclusion that the desired parameter 
cannot be measured. 

Two general types of problems have to be distinguished. The first one 
deals with a situation in which very little about the device is known except 
that it is a Moore or a Mealy automaton with a given input set and that it is 
one particular automaton from a general class of automaton. In this case, we 
are dealing with an automaton identification problem. To solve this problem 
we must determine the model that can be used to describe the automaton's 
input-output behavior. 

The second general class includes measurement and control problems. 
In this case, we conduct experiments on an automaton with a known transition 
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table [i.e., the five-tuple (Q, E, A, ~, k)]. Here, we are interested in measuring 
and/or controlling various parameters of the automaton. 

The types of experiments that we can perform are limited by the number 
of identical copies of the automaton we have available for investigation, the 
amount of flexibility that we allow the experimenter, and the amount of a 
priori information available about the automaton's internal behavior, Usually, 
when we are carrying out an experiment, we assume that only a single 
copy of the automaton is available. Such an experiment is called a simple 
experiment. On occasion, however, we have several identical copies of the 
automaton or a single automaton with a "reset" button. Experiments that take 
advantage of the availability of effectively more than one copy of an automa- 
ton are called multiple experiments'. 

The amount of flexibility that we allow the experimenter in selecting 
the input sequences is an important consideration. If the input sequence is 
fixed in advance, we say that the experimenter is required to perform a preset 
experiment. If the experimenter can modify the input sequence in response 
to information gained from the output sequences, we call this an adaptive 
(branch) experiment in which the input consists of a succession of subse- 
quences, each corresponding to a decision on the experimenter's part. 

We shall describe two important measurement problems. In the first, 
the terminal-state identification (homing) problem, we are dealing with an 
automaton with an unknown initial state q. The goal is to identify the final 
state of the automaton. We apply an appropriate input sequence w ~ E* and 
observe the resulting output h(q, w). On the basis of this observation we are 
able to specify the terminal state p = 8(q, w). The terminal-state identification 
problem is always solvable. 

The initial-state identification (diagnosing) problem deals with the prob- 
lem of trying to determine the unknown initial state of the automaton. To 
solve this problem we apply an appropriate input word to the automaton or we 
carry out an adaptive experiment. From the observation of the corresponding 
output, we are able to make propositions of  the initial state. Not all initial- 
state identification problems have unique solutions. More exactly, there exist 
automata such that the initial state of the automaton is not determinable. The 
first automaton of  this kind was invented to demonstrate that particular feature 
by Moore (1956). It is quite remarkable that Moore's original motivation for 
the introduction of Moore automata was the modeling of  the Heisenberg 
uncertainty principle. 

Consider the Moore automaton of Fig. 15. All four states are mutually 
distinguishable: The first free output symbol distinguishes q4, which has 
output 1, from all other states, which have output 0. 

To distinguish between q~ and q2 we apply the input 0 [h(ql, 0) = 01, 
h(q2, 0) = 00]. 
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qJl  
0 

0/F0 0 
q3/O 1 qJO 

Fig. 15. Moore's uncertainty automaton. 

To distinguish between q~ and q3 we apply the input 1 [k(qb 1) = 00, 
h(q3, 1) = 01]. 

To distinguish between q2 and q3 we apply the input 0 [h(q2, 0) = 00, 
~-(q3, 0) = 01 ]. 

Nevertheless, the initial state is not determinable. Any experiment which 
distinguishes between ql and q~ cannot distinguish between q~ and q3. Corl- 
versely, any experiment which distinguishes between q~ and q3 cannot distin- 
guish between q~ and q2. Note that any experiment which begins with the 
input 1 does not permit qt to be distinguished from qz (since in either case 
the first input is 0 and the second state is q3, so that no future inputs can 
produce different outputs). Similarly, any experiment which begins with the 
input 0 does not permit ql to be distinguished from q3- Moore (1956) speaks 
of an "analogue of the Heisenberg uncertainty principle," which was termed 
"Moore's uncertainty Principle" by Conway (1971). Finkelstein and Fin- 
kelstein called this feature "computational complementarity." 

Note that, as already pointed out by Moore, if an arbitrary number of 
identical automaton copies in the same initial state were available, the initial- 
state problem would be solvable by multiple experiments for any minimal 
automaton. In this setup, for every pair {p, q} of states, one could take a 
"fresh" automaton copy and apply an input word which distinguishes the 
two states p and q. From the observed outputs one could then determine the 
initial state. 

A preset experiment is completely specified by an input word w E E*. 
Formally, an adaptive experiment can be defined by a mapping E: A* --> 
U {~}. The experiment E is carried out in the following way: 

(i) If the automaton is a Mealy automaton, E(~) denotes the first input 
symbol. For a Moore automaton, E(x) denotes the first input symbol, where 
x is the first observed output symbol, which comes free. 
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(ii) Let us assume the input w e E* was applied and the output W 
A* was observed. Then, we apply the input E(W) to the automaton. The 
experiment terminates if E(W) = e. 

The class of preset experiments is a subclass of the class of adaptive 
experiments. For every experiment E we denote the obtained output of an 
initial state q by he(q), hE defines a mapping Q to A*. 

3.3. Propositional Calculus of Automata 

In the following, we shall investigate the logic of the initial-state identifi- 
cation problem. We call a proposition regarding the initial state of the automa- 
ton experimentally decidable if there is an experiment which determines the 
truth value of the proposition. The most general form of a prediction concern- 
ing the initial state q of the automaton is that the initial state q is contained 
in a subset P of the state set Q. Therefore, we may identify propositions 
concerning the initial state with subsets of Q. A subset P of Q is then identified 
with the proposition that the initial state is contained in P. More explicitly, 
we are dealing with propositions of the form, "the initial state of the automaton 
is in P," where P is a subset of the set of automaton states Q. 

We are now dealing with the problem of which subsets of the state set 
are experimentally decidable. Note, for instance, that the proposition {q~} 
(i.e., the proposition "the initial state of the automaton is ql") regarding 
Moore's uncertainty automaton (cf. Fig. 15) is not decidable. 

Definition 3.3.1 (Automaton Propositional Calculus). Let E be an experi- 
ment (a preset or adaptive one). We define an equivalence relation on the 
state set Q by 

E 
q ----p iff he(q) = he(p) 

E 
for _any q, p e Q. We denote the partition of Q corresponding to -= by 
Q~ ~. The propositions decidable bYEthe experiment E are the elements of 
the Boolean algebra generated by Q~ - ,  denoted by Be. There is also another 
way to construct the experimentally decidable propositions of an experiment 
E. Let he(P) = LJqEp he(q) be the direct image of P under he for any P C_ 
Q. We denote the direct image of Q by Oe, Oe = he(Q). It follows that the 
most general form of a prediction concerning the outcome Wof the experiment 
E is that W lays in a subset of Oe. Therefore, the experimentally decidable 
propositions consist of all inverse images h{~(S) of subsets S of Oe, a 
procedure which can be constructively formulated (e.g., as an effectively 
computable algorithm), and which also leads to the Boolean algebra BE. 
Let ~ be the set of all Boolean algebras BE. We call the partition logic 
R = (Q, 8 )  an automaton propositional calculus. 
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This calculus possesses the following properties: 
(i) R contains two special propositions: the proposition 0 ,  that the 

automaton is in no initial state, which is always false, and, the proposition 
Q, that the automaton is in an arbitrary state, which is always true. 0 = O 
is the least element and 1 -- Q is the greatest element in R. 

(ii) Let A ~ R. Any experiment which decides A decides also A' = 
Q\A. Moreover, A is true iff A' is false. 

(iii) Let A, B ~ R. Then A -< B holds iff (a) there is an experiment 
which decides both propositions A and B; (b) A implies B (whenever A is 
true, then also B is true), which is also expressed by A C_ B. 

The use of  a nontransitive implication relation is not new (Specker, 
1960; Kochen and Specker, 1965a,b). 

We shall give some examples. First, we shall construct the propositional 
calculus of Moore's original uncertainty automaton (cf. Fig. 15). There are 
three different partitions accessible by experiments. The preset experiment 

corresponds to observing only the first free output of the Moore automaton 
without any input. Therefore it yields the partition Q/(e) = { { q t, qz, q3 }, { q4 } }. 

The preset experiment 0, i.e., input of 0, yields the partition 

Q/(O) = {{ql, q3}, {q2}, {q4} } 

The preset experiment 1, i.e., the input of  1, yields the partition 

Q/(1) = {{ql, qz}, {q31, {q4}} 

Q/(O) and Q/(1) are finer partitions than Q/(e) and we may neglect Q/(e) by 
forming the propositional calculus. We obtain the partition logic drawn in 
Fig. 16 (the numbers denote the corresponding states). A Hilbert space repre- 
sentation of  the partition logic is drawn in Fig. 21. 

The automaton defined by Fig. 17 yields a propositional calculus drawn 
in Fig. 18, which is also found in the quantum logic of  two-dimensional 
Hilbert space. 

Every automaton proposition calculus is by definition a partition logic. 
Conversely, to every partition logic, a Mealy automaton can be effectively 
constructed which possesses that partition logic as propositional calculus 
(Svozil, 1993). Let R = (Q, 9]) be a partition logic. We rewrite every P 
,9i as an indexed family P = (Pi)ieln, where the index set I,, denotes the set 
{ 1 . . . . .  n} of natural numbers. We assume that Pi 4: Pi for i 4: j. Now, N 
denotes the greatest number of  elements in a partition P ~ ,9t. We put M = 
(Q, ~ ,  IN, ~, h). Next, the transition and output functions ~ and h have to 
be properly defined. Let p be an arbitrary element of  Q. For all q ~ Q and 
all P ~ ~)t we define (i) b(q, P) = p and (ii) h(q, P) = i iff q ~ Pi. In doing 
so, we obtain as the automaton propositional calculus the partition logic 
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{1,2,3,4} 

{3, {2,4} 

{1,2} ~ ~ 2 } / / /  {1,3} 

Fig. 16. Hasse diagram of Moore's uncertainty automaton. 

(M, ,~). Instead of ~, we could also use the decomposition (S(R), yielding 
an automaton with at most three outputs. 

We illustrate this construction by an example: Consider the partition 
logic isomorphic to Moore's original automaton. It is given by (Q, ~) = 
({1,2,3,4}, {R = {R, = {1},R2 = {2, 3},R 3 = {4}},S = {SI = {1,2}, 
$2 = {3}, $3 = {4}}}. We obtain the Mealy automaton M = {Q, {R, S}, 
{ 1, 2, 3}, b, h}, where ~ and ~ are represented by the transition diagram of 
Fig. 19. 

3/1 

~ ) q 3  

1/O/J! 1/0 2/0 XNk~ 

II It C q, q C) 
1/1 2/1 

Fig. 17. Quantumlike Mealy automaton. 
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{1,2,3} 

Fig. 18. Hasse diagram of the automaton logic of the quantumlike Mealy automaton. 

{2,3} 

R/1 S/1 

Q • • 

2 3 4 
Fig. 19. Mealy automaton yielding the partition logic of Moore's uncertainty automaton. 

q3 

1/1 
0/0 

1/0 

• 4 0 / 1  ~ )  

q4 

q2,  

0/0 
1/0 

~Oq~ 
1/0 

(3/0 
Fig. 20. Mealy automaton yielding a nontransitive propositional calculus. 
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4 

12 2 
Fig. 21. Identification of atoms with rays in three-dimensional real Hilbert space. If v(a) is 
the subspace spanned by a, v(12) k v(3), v(2) _1_ v(13), v(12) .k v(4), v(2) ± v(4), v(3) ± v(4), 
v(13) 3_ v(4), v(12) :~ v(2). 

We have already remarked that not every partition logic is an orthomodu- 
lar poset. An automaton example for this case is given in Fig. 20. The finest 
partitions accessible by experiments are Q/(O0) = {{1}, {2}, {3, 4}} and 
Q/(10) = {{ 1, 2}, {3}, {4}} (the numbers denote the corresponding states). 
Here, {1} ----- {1,2} and {1,2} -< {1 ,2 ,3}  holds, but {1} -< {1 ,2 ,3 }  does 
not hold. 
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